StarRocks 3.0 vs Clickhouse vs Apache Druid® SSB单表性能测试对比报告
本文发表于: &{ new Date(1684684800000).toLocaleDateString() }
测试结论
Star Schema Benchmark(以下简称 SSB)是学术界和工业界广泛使用的一个星型模型测试集(来源论文),通过这个测试集合可以方便的对比各种 OLAP 产品的基础性能指标。ClickHouse 通过改写 SSB,将星型模型打平转化成宽表,改造成了一个单表测试 benchmark(参考链接)。本报告记录了 StarRocks、ClickHouse 和 Apache Druid 在SSB 单表数据集上的性能对比结果,测试结论如下:
- 在标准测试数据集的 13 个查询上,StarRocks 整体查询性能是 ClickHouse 的 2.1 倍,Apache Druid 的 8.7 倍。
- StarRocks 启用 Bitmap Index 后整体查询性能是未启用的 1.3 倍,此时整体查询性能是 ClickHouse 的 2.8 倍,Apache Druid 的 11.4 倍。
本文在 SSB 单表场景下对比了 StarRocks、ClickHouse 和 Apache Druid 的查询性能。采用 3x16core 64GB 内存的云主机,在 6 亿行的数据规模进行测试。
测试准备
硬件环境
机器 | 3台 阿里云主机 |
CPU | 16core Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz Cache size: 36608 KB |
内存 | 64GB |
网络带宽 | 5 Gbits/s |
磁盘 | ESSD 云盘 |
软件环境
StarRocks,ClickHouse 和 Apache Druid 部署在相同配置的机器上分别进行测试。
- StarRocks 部署 1 个 FE 和 3 个 BE。
- ClickHouse 部署三个节点后建立分布式表。
- Apache Druid 三个节点都部署 Data Servers,同时选择一个节点混合部署 Master Servers,另一个节点混合部署 Query Servers。
内核版本:Linux 3.10.0-1160.59.1.el7.x86_64
操作系统版本:CentOS Linux release 7.9.2009
软件版本:StarRocks 社区版 3.0,ClickHouse 23.3,Apache Druid 25.0.0
测试数据与结果
测试数据
表明 | 行数 | 说明 |
lineorder | 6 亿 | SSB 商品订单表 |
customer | 300 万 | SSB 商户表 |
part | 140 万 | SSB 零部件表 |
supplier | 20 万 | SSB 供应商表 |
dates | 2556 | 日期表 |
lineorder_flat | 6 亿 | SSB 打平后的宽表 |
测试结果
StarRocks 与 ClickHouse、Druid 的性能对比,分别使用 ClickHouse、Druid 的查询时间除以 StarRocks 的查询时间,结果数字越大代表 StarRocks 性能越好。
StarRocks-3.0 | StarRocks-3.0-index | ClickHouse-23.3(ms) | ClickHouse vs StarRocks | Druid-25.0.0(ms) | Druid vs StarRocks | |
Q1.1 | 33 | 30 | 48 | 1.45 | 430 | 13.03 |
Q1.2 | 10 | 10 | 15 | 1.50 | 270 | 27.00 |
Q1.3 | 23 | 30 | 14 | 0.61 | 820 | 35.65 |
Q2.1 | 186 | 116 | 301 | 1.62 | 760 | 4.09 |
Q2.2 | 156 | 50 | 273 | 1.75 | 920 | 5.90 |
Q2.3 | 73 | 36 | 255 | 3.49 | 910 | 12.47 |
Q3.1 | 173 | 233 | 398 | 2.30 | 1080 | 6.24 |
Q3.2 | 120 | 80 | 319 | 2.66 | 850 | 7.08 |
Q3.3 | 123 | 30 | 227 | 1.85 | 890 | 7.24 |
Q3.4 | 13 | 16 | 18 | 1.38 | 750 | 57.69 |
Q4.1 | 203 | 196 | 469 | 2.31 | 1230 | 6.06 |
Q4.2 | 73 | 76 | 160 | 2.19 | 1020 | 13.97 |
Q4.3 | 50 | 36 | 148 | 2.96 | 820 | 16.40 |
sum | 1236 | 939 | 2645 | 2.14 | 10750 | 8.70 |
测试步骤
ClickHouse 的建表导入参考 官方文档,StarRocks 的数据生成导入流程如下:
生成数据
首先下载 ssb-poc 工具包并编译。
wget https://starrocks-public.oss-cn-zhangjiakou.aliyuncs.com/ssb-poc-1.0.zip
unzip ssb-poc-1.0.zip
cd ssb-poc-1.0/
make && make install
cd output/
编译完成后,所有相关工具都安装在 output 目录下,后续所有操作都在 output 目录下进行。
首先生成 SSB 标准测试集scale factor=100的数据。
sh bin/gen-ssb.sh 100 data_dir
创建表结构
修改配置文件 conf/starrocks.conf,指定脚本操作的集群地址,重点关注 mysql_host和mysql_port,然后执行建表操作。
sh bin/create_db_table.sh ddl_100
导入数据
使用 Stream Load 导入多表数据,然后使用 INSERT INTO 将多表打平成单表。
sh bin/flat_insert.sh data_dir
查询数据
sh bin/benchmark.sh ssb-flat
启用 Bitmap Index
StarRocks 在启用 Bitmap Index 的情况下,性能更胜一筹,尤其在 Q2.2 Q2.3 Q3.3 上有显著提升。如果您希望测试启用 Bitmap Index 下的性能,可以对所有字符串列创建 Bitmap Index,具体操作如下:
- lineorder_flat 重新建表,建表时创建所有 Bitmap Index.
sh bin/create_db_table.sh ddl_100_bitmap_index
- 在所有 BE 节点的配置文件中新增如下参数,然后重启 BE。
bitmap_max_filter_ratio=1000
- 重新执行导入命令。
sh bin/flat_insert.sh data_dir
导入完成后需要等待 compaction 完成,再重新执行步骤 4.4,即查询 Bitmap Index 启动后的结果。
可以通过 select CANDIDATES_NUM from information_schema.be_compactions 命令查看 compaction进度。对于 3 个 BE 节点,如下结果说明 Compaction 完成:
mysql> select CANDIDATES_NUM from information_schema.be_compactions;
+----------------+
| CANDIDATES_NUM |
+----------------+
| 0 |
| 0 |
| 0 |
+----------------+
3 rows in set (0.01 sec)
测试 SQL 与建表语句
测试 SQL
--Q1.1
SELECT sum(lo_extendedprice * lo_discount) AS `revenue`
FROM lineorder_flat
WHERE lo_orderdate >= '1993-01-01' and lo_orderdate <= '1993-12-31'
AND lo_discount BETWEEN 1 AND 3 AND lo_quantity < 25;
--Q1.2
SELECT sum(lo_extendedprice * lo_discount) AS revenue FROM lineorder_flat
WHERE lo_orderdate >= '1994-01-01' and lo_orderdate <= '1994-01-31'
AND lo_discount BETWEEN 4 AND 6 AND lo_quantity BETWEEN 26 AND 35;
--Q1.3
SELECT sum(lo_extendedprice * lo_discount) AS revenue
FROM lineorder_flat
WHERE weekofyear(lo_orderdate) = 6
AND lo_orderdate >= '1994-01-01' and lo_orderdate <= '1994-12-31'
AND lo_discount BETWEEN 5 AND 7 AND lo_quantity BETWEEN 26 AND 35;
--Q2.1
SELECT sum(lo_revenue), year(lo_orderdate) AS year, p_brand
FROM lineorder_flat
WHERE p_category = 'MFGR#12' AND s_region = 'AMERICA'
GROUP BY year, p_brand
ORDER BY year, p_brand;
--Q2.2
SELECT
sum(lo_revenue), year(lo_orderdate) AS year, p_brand
FROM lineorder_flat
WHERE p_brand >= 'MFGR#2221' AND p_brand <= 'MFGR#2228' AND s_region = 'ASIA'
GROUP BY year, p_brand
ORDER BY year, p_brand;
--Q2.3
SELECT sum(lo_revenue), year(lo_orderdate) AS year, p_brand
FROM lineorder_flat
WHERE p_brand = 'MFGR#2239' AND s_region = 'EUROPE'
GROUP BY year, p_brand
ORDER BY year, p_brand;
--Q3.1
SELECT
c_nation,
s_nation,
year(lo_orderdate) AS year,
sum(lo_revenue) AS revenue FROM lineorder_flat
WHERE c_region = 'ASIA' AND s_region = 'ASIA' AND lo_orderdate >= '1992-01-01'
AND lo_orderdate <= '1997-12-31'
GROUP BY c_nation, s_nation, year
ORDER BY year ASC, revenue DESC;
--Q3.2
SELECT c_city, s_city, year(lo_orderdate) AS year, sum(lo_revenue) AS revenue
FROM lineorder_flat
WHERE c_nation = 'UNITED STATES' AND s_nation = 'UNITED STATES'
AND lo_orderdate >= '1992-01-01' AND lo_orderdate <= '1997-12-31'
GROUP BY c_city, s_city, year
ORDER BY year ASC, revenue DESC;
--Q3.3
SELECT c_city, s_city, year(lo_orderdate) AS year, sum(lo_revenue) AS revenue
FROM lineorder_flat
WHERE c_city in ( 'UNITED KI1' ,'UNITED KI5') AND s_city in ('UNITED KI1', 'UNITED KI5')
AND lo_orderdate >= '1992-01-01' AND lo_orderdate <= '1997-12-31'
GROUP BY c_city, s_city, year
ORDER BY year ASC, revenue DESC;
--Q3.4
SELECT c_city, s_city, year(lo_orderdate) AS year, sum(lo_revenue) AS revenue
FROM lineorder_flat
WHERE c_city in ('UNITED KI1', 'UNITED KI5') AND s_city in ('UNITED KI1', 'UNITED KI5')
AND lo_orderdate >= '1997-12-01' AND lo_orderdate <= '1997-12-31'
GROUP BY c_city, s_city, year
ORDER BY year ASC, revenue DESC;
--Q4.1
SELECT year(lo_orderdate) AS year, c_nation, sum(lo_revenue - lo_supplycost) AS profit
FROM lineorder_flat
WHERE c_region = 'AMERICA' AND s_region = 'AMERICA' AND p_mfgr in ('MFGR#1', 'MFGR#2')
GROUP BY year, c_nation
ORDER BY year ASC, c_nation ASC;
--Q4.2
SELECT year(lo_orderdate) AS year,
s_nation, p_category, sum(lo_revenue - lo_supplycost) AS profit
FROM lineorder_flat
WHERE c_region = 'AMERICA' AND s_region = 'AMERICA'
AND lo_orderdate >= '1997-01-01' and lo_orderdate <= '1998-12-31'
AND p_mfgr in ( 'MFGR#1' , 'MFGR#2')
GROUP BY year, s_nation, p_category
ORDER BY year ASC, s_nation ASC, p_category ASC;
--Q4.3
SELECT year(lo_orderdate) AS year, s_city, p_brand,
sum(lo_revenue - lo_supplycost) AS profit
FROM lineorder_flat
WHERE s_nation = 'UNITED STATES'
AND lo_orderdate >= '1997-01-01' and lo_orderdate <= '1998-12-31'
AND p_category = 'MFGR#14'
GROUP BY year, s_city, p_brand
ORDER BY year ASC, s_city ASC, p_brand ASC;
建表语句
lineorder_flat 默认建表
这个建表语句是为了匹配当前集群和数据规格(3 个 BE,scale factor = 100)。如果您的集群有更多的 BE 节点,或者更大的数据规格,可以调整分桶数,重新建表和导数据,可实现更好的测试效果。
CREATE TABLE `lineorder_flat` (
`LO_ORDERDATE` date NOT NULL COMMENT "",
`LO_ORDERKEY` int(11) NOT NULL COMMENT "",
`LO_LINENUMBER` tinyint(4) NOT NULL COMMENT "",
`LO_CUSTKEY` int(11) NOT NULL COMMENT "",
`LO_PARTKEY` int(11) NOT NULL COMMENT "",
`LO_SUPPKEY` int(11) NOT NULL COMMENT "",
`LO_ORDERPRIORITY` varchar(100) NOT NULL COMMENT "",
`LO_SHIPPRIORITY` tinyint(4) NOT NULL COMMENT "",
`LO_QUANTITY` tinyint(4) NOT NULL COMMENT "",
`LO_EXTENDEDPRICE` int(11) NOT NULL COMMENT "",
`LO_ORDTOTALPRICE` int(11) NOT NULL COMMENT "",
`LO_DISCOUNT` tinyint(4) NOT NULL COMMENT "",
`LO_REVENUE` int(11) NOT NULL COMMENT "",
`LO_SUPPLYCOST` int(11) NOT NULL COMMENT "",
`LO_TAX` tinyint(4) NOT NULL COMMENT "",
`LO_COMMITDATE` date NOT NULL COMMENT "",
`LO_SHIPMODE` varchar(100) NOT NULL COMMENT "",
`C_NAME` varchar(100) NOT NULL COMMENT "",
`C_ADDRESS` varchar(100) NOT NULL COMMENT "",
`C_CITY` varchar(100) NOT NULL COMMENT "",
`C_NATION` varchar(100) NOT NULL COMMENT "",
`C_REGION` varchar(100) NOT NULL COMMENT "",
`C_PHONE` varchar(100) NOT NULL COMMENT "",
`C_MKTSEGMENT` varchar(100) NOT NULL COMMENT "",
`S_NAME` varchar(100) NOT NULL COMMENT "",
`S_ADDRESS` varchar(100) NOT NULL COMMENT "",
`S_CITY` varchar(100) NOT NULL COMMENT "",
`S_NATION` varchar(100) NOT NULL COMMENT "",
`S_REGION` varchar(100) NOT NULL COMMENT "",
`S_PHONE` varchar(100) NOT NULL COMMENT "",
`P_NAME` varchar(100) NOT NULL COMMENT "",
`P_MFGR` varchar(100) NOT NULL COMMENT "",
`P_CATEGORY` varchar(100) NOT NULL COMMENT "",
`P_BRAND` varchar(100) NOT NULL COMMENT "",
`P_COLOR` varchar(100) NOT NULL COMMENT "",
`P_TYPE` varchar(100) NOT NULL COMMENT "",
`P_SIZE` tinyint(4) NOT NULL COMMENT "",
`P_CONTAINER` varchar(100) NOT NULL COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(`LO_ORDERDATE`, `LO_ORDERKEY`)
COMMENT "OLAP"
PARTITION BY date_trunc('year', `LO_ORDERDATE`)
DISTRIBUTED BY HASH(`LO_ORDERKEY`) BUCKETS 48
PROPERTIES ("replication_num" = "1");
lineorder_flat 创建 Bitmap Index 表
CREATE TABLE `lineorder_flat` (
`LO_ORDERDATE` date NOT NULL COMMENT "",
`LO_ORDERKEY` int(11) NOT NULL COMMENT "",
`LO_LINENUMBER` tinyint(4) NOT NULL COMMENT "",
`LO_CUSTKEY` int(11) NOT NULL COMMENT "",
`LO_PARTKEY` int(11) NOT NULL COMMENT "",
`LO_SUPPKEY` int(11) NOT NULL COMMENT "",
`LO_ORDERPRIORITY` varchar(100) NOT NULL COMMENT "",
`LO_SHIPPRIORITY` tinyint(4) NOT NULL COMMENT "",
`LO_QUANTITY` tinyint(4) NOT NULL COMMENT "",
`LO_EXTENDEDPRICE` int(11) NOT NULL COMMENT "",
`LO_ORDTOTALPRICE` int(11) NOT NULL COMMENT "",
`LO_DISCOUNT` tinyint(4) NOT NULL COMMENT "",
`LO_REVENUE` int(11) NOT NULL COMMENT "",
`LO_SUPPLYCOST` int(11) NOT NULL COMMENT "",
`LO_TAX` tinyint(4) NOT NULL COMMENT "",
`LO_COMMITDATE` date NOT NULL COMMENT "",
`LO_SHIPMODE` varchar(100) NOT NULL COMMENT "",
`C_NAME` varchar(100) NOT NULL COMMENT "",
`C_ADDRESS` varchar(100) NOT NULL COMMENT "",
`C_CITY` varchar(100) NOT NULL COMMENT "",
`C_NATION` varchar(100) NOT NULL COMMENT "",
`C_REGION` varchar(100) NOT NULL COMMENT "",
`C_PHONE` varchar(100) NOT NULL COMMENT "",
`C_MKTSEGMENT` varchar(100) NOT NULL COMMENT "",
`S_NAME` varchar(100) NOT NULL COMMENT "",
`S_ADDRESS` varchar(100) NOT NULL COMMENT "",
`S_CITY` varchar(100) NOT NULL COMMENT "",
`S_NATION` varchar(100) NOT NULL COMMENT "",
`S_REGION` varchar(100) NOT NULL COMMENT "",
`S_PHONE` varchar(100) NOT NULL COMMENT "",
`P_NAME` varchar(100) NOT NULL COMMENT "",
`P_MFGR` varchar(100) NOT NULL COMMENT "",
`P_CATEGORY` varchar(100) NOT NULL COMMENT "",
`P_BRAND` varchar(100) NOT NULL COMMENT "",
`P_COLOR` varchar(100) NOT NULL COMMENT "",
`P_TYPE` varchar(100) NOT NULL COMMENT "",
`P_SIZE` tinyint(4) NOT NULL COMMENT "",
`P_CONTAINER` varchar(100) NOT NULL COMMENT "",
index bitmap_lo_orderpriority (lo_orderpriority) USING BITMAP,
index bitmap_lo_shipmode (lo_shipmode) USING BITMAP,
index bitmap_c_name (c_name) USING BITMAP,
index bitmap_c_address (c_address) USING BITMAP,
index bitmap_c_city (c_city) USING BITMAP,
index bitmap_c_nation (c_nation) USING BITMAP,
index bitmap_c_region (c_region) USING BITMAP,
index bitmap_c_phone (c_phone) USING BITMAP,
index bitmap_c_mktsegment (c_mktsegment) USING BITMAP,
index bitmap_s_region (s_region) USING BITMAP,
index bitmap_s_nation (s_nation) USING BITMAP,
index bitmap_s_city (s_city) USING BITMAP,
index bitmap_s_name (s_name) USING BITMAP,
index bitmap_s_address (s_address) USING BITMAP,
index bitmap_s_phone (s_phone) USING BITMAP,
index bitmap_p_name (p_name) USING BITMAP,
index bitmap_p_mfgr (p_mfgr) USING BITMAP,
index bitmap_p_category (p_category) USING BITMAP,
index bitmap_p_brand (p_brand) USING BITMAP,
index bitmap_p_color (p_color) USING BITMAP,
index bitmap_p_type (p_type) USING BITMAP,
index bitmap_p_container (p_container) USING BITMAP
) ENGINE=OLAP
DUPLICATE KEY(`LO_ORDERDATE`, `LO_ORDERKEY`)
COMMENT "OLAP"
PARTITION BY date_trunc('year', `LO_ORDERDATE`)
DISTRIBUTED BY HASH(`LO_ORDERKEY`) BUCKETS 48
PROPERTIES ("replication_num" = "1");